ReOrder Buffer Rev. 2

The ReOrder buffer is found in all modern high performance processors. It is used to ensure
correct program outcomes in out-of-order processors.

Exceptions in Out-of-Order Execution

The major drawback of Tomasulo’s algorithm is that it does not handle exceptions very well.
When an exception occurs in OOO processors the instructions after the exception producing
instruction have been executed, resulting in incorrect outcomes.

Branch Mispredictions in OOO Execution
Tomasulo’s algorithm does not handle branch mispredictions in OOO processors well.

Phantom Exceptions - if a branch is mispredicted a number of instructions are executed before
the misprediction is detected. It is possible to generate an exception within these executed
instructions, now the processor must recover from an exception that should not have occurred
as well as the misprediction.

Exception handling should not occur until the processor is sure they are not phantom
exceptions.

Correct OOO Execution
- Execute OO0
- Broadcast OO0
- Deposit values in registers In-Order. This can be achieved with a ReOrder Buffer.

A ReOrder Buffer remembers the program order and keeps the results until it is safe to write
them.

ROB Part 1

The ROB has three fields
-The data being held by the ROB
-Done bit, which tracks the validity of the data in the value field
-Which register is holding the data

Instructions are kept in program order.
There are two pointers associated with the ROB:
-Commit tells which instruction is to be completed next
-Issue tells where the next issued instruction is to be placed in the ROB

ROB Part 2
How the ROB interacts with the 1Q, RS, Regs, and the RAT.



The steps for Issue when using a ROB
1. Get the instruction from the Instruction Queue
2. Get a free Reservation Station
3. Get the next ReOrder Buffer entry (at the Issue pointer)
4. Look up the source registers in the RAT
5. Change the RAT for destination registers to point to the ROB entry instead of the
RS

Dispatch with the ReOrder Buffer

Steps for dispatch when using a ROB
1. Find results where the tags match.
2. Only instructions where all the inputs are ready are considered for dispatch
3. Pick one instruction for each functional unit
4. Free the reservation station. This is different than Tomasulo’s algorithm. With a
ROB the instruction is broadcast with the ROB name rather than the RS name, so
the RS can be freed sooner.

ROB 3

Broadcast with the ReOrder Buffer

The steps for broadcasting with a ROB:
1. Capture the result in the waiting Reservation Station
2. Write the result to the ROB

Commit with the ReOrder Buffer
The steps to commit with a ROB
1. Look at only the oldest instruction in the ROB
2. Wait for this instruction to complete
3. Copy the result from the ROB to the register. This means that register writes are
occurring in order.
4. Update the RAT with the destination register
5. Free the ROB entry

Hardware Organization with the ROB
The ROB has a head, the next instruction to be issued, and a tail, the next instruction to commit.
Entries in between these two are being executed.

The ROB is used to:
-Remember the program order
-Temporarily store an instruction’s result
-Serve as the name (tag) for the result




Branch Misprediction Recovery Part 1

Branches are not committed until they are resolved. This means instructions that come after the
branch are also not committed until the branch is committed.

So branch misprediction recovery requires a flush of the ROB, RS, and RAT, then the correct
instructions are fetched from the correct address. The ROB is flushed simply by moving the
Issue pointer to the same entry as the Commit pointer. The RAT entries are set to point to the
correct registers.

ROB and Exceptions

Two problems with exceptions:

1. OO0 instructions - When an exception occurs the ROB has not committed, so everything
can be flushed and the exception handler can be loaded.

2. Phantom Exceptions - Since nothing is committed after the branch, any misprediction results
in a flush of the instructions, including any exceptions, and a load of the correct instructions.

Treat the exception the same as any other result — delay the actual handling of the instruction
until the commit.

Committed instructions cannot be “uncommitted”.

RAT Updates on Commit
-Commit instruction
- The result is put in the registers
- Check the RAT. If the RAT entry is not the latest RAT update, nothing needs to be done
to the RAT. If it is the latest update, change the value in the RAT to correspond to the
correct register.

Registers are always up-to-date, which improves exception handling.
The values are updated on commit only if renaming occurs.

Unified Reservation Station

Unified reservation stations: combine the reservation stations for the Adder and the Multiplier. All
of the reservation stations are in one large array, so the reservation stations can be used when
necessary, they do not have to wait for a specific set of RS.

The down side of the unified RS is the increased complexity in hardware. The hardware must be
able to determine the correct arithmetic unit for each entry.

Superscalar

A superscalar processor must be able to:
-Fetch more than 1 instruction per cycle
-Decode more than 1 instruction per cycle



-Issue more than 1 instruction per cycle
-Dispatch more than 1 instruction per cycle
-Broadcast more than 1 instruction per cycle
-Commit more than 1 instruction per cycle

Weakest link: the processor is limited by the slowest task. If all of the tasks, except Decode,
can perform 4 instructions per cycle and Decode can only perform 2 instructions per cycle, then
the processor is limited to 2 instructions per cycle.

Terminology Confusion
Most research papers will use:
Issue, Dispatch, Commit
Processor Designers will often give these different names

Out of Order
What is really out of order?
Fetch, Decode, Issue are all in order - this ensures dependencies are done in order

Execute and Write can be done out of order

Commit is done in-order




